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Complexity and ultradiffusion 

Constantin P BachastS and B A Huberman§ 
t Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA 
$ Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA 

Received 17 March 1987 

Abstract. We present the exact solution to the problem of ultradiffusion in an arbitrary 
hierarchical space. We derive rigorous upper and lower bounds for the dynamic exponent 
describing the decay of the autocorrelation function. We show that the upper bound is 
saturated by both uniformly and randomly multifurcating hierarchical trees and identify 
a class of highly unbalanced trees that saturate the lower bound. We conclude that the 
speed of relaxation is a measure of the complexity or lack of self-similarity of the underlying 
tree. We point out that complexity may be revealed by the temperature dependence of the 
dynamic exponent and, in particular, by the nature of the transition from exponential to 
power-law decay. 

1. Introduction 

A large variety of natural and artificial systems have an exact or approximate hierar- 
chical structure (Simon 1962, Rammal et a1 1986). Examples range from the reporting 
schemes in social organisations, to the way macromolecules are built out of atomic 
constituents or organisms out of cells, to the way individual spins can be collected 
into larger blocks at the critical point of ferromagnets. More recently, it has been 
realised that a hierarchical organisation of states appears spontaneously in the low- 
temperature phase of the mean-field theory spin glass (Sherrington and Kirkpatrick 
1975, MCzard et a1 1984a, b) and it has been conjectured that the same holds true for 
glasses, hard combinatorial optimisation problems (Kirkpatrick and Toulouse 1985, 
Bachas 1985, Bouchaud and Le Doussal 1986, Sorkin et a1 1986, Fu and Anderson 
1986), the conformational substates of proteins (Ansari et af 1985, Stein 1985) and 
other complex frustrated systems. 

A common feature of all these systems is that, because of the existence of many 
different timescales, they appear to relax slower than exponentially when perturbed 
(Kohlrausch 1847, Williams and Watts 1970, Palmer et af 1984). To model this 
behaviour several authors have considered diffusive processes on hierarchical struc- 
tures. The earliest variant proposed by Huberman and Kerzberg (1985), and further 
analysed by Teitel and Domany (1985a, b) and Maritan and Stella (1986a, b), consisted 
of a particle diffusing over a hierarchical array of energy barriers in one dimension. 
Allowing for long-range hoppings leads to the problem of diff usion in a truly ultrametric 
space, which has been analysed by a number of authors (Schreckenberg 1985, Ogielski 
and Stein 1985, Paladin et a1 1985, Zheng 1986, Blumen et a1 1986). Finally, a third 
related process is the random walk on the backbone of a tree, which has been used 
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to model the observed stickiness in the chaotic transport of particles (Meiss and Ott 
1985, 1986, Grossman et a1 1985). 

A major limitation of all these treatments is that they only apply to the simple case 
of uniform hierarchical structures, described by trees whose branches at any given 
hierarchy level are totally indistinguishable. The intrinsic self-similarity of such trees 
allows for the application of renormalisation group techniques, so that ultradiffusion 
is in this case only a variant of the extensively studied diffusion on fractals (de Gennes 
1976, Alexander and Orbach 1982, Rammal and Toulouse 1983). Hierarchical struc- 
tures need not, however, be self-similar. For instance, it is hard to imagine how the 
metastable states of a spin glass could be represented by the indistinguishable leaves 
of a uniform tree, when different free energy valleys are known to carry different 
weights (Mizard et a1 1985). And in a more general context, it is precisely the lack 
of self-similarity, or the appearance of different interactions at every new level of the 
hierarchy, that accounts for the complexity of hierarchical systems such as biological 
organisms and social organisations. It is therefore interesting to determine how hierar- 
chical dynamics may depend on the underlying tree structure. This is the subject of 
this paper, a summary of which has already been published elsewhere (Bachas and 
Huberman 1986). 

We will restrict ourselves here to the problem of diffusion in a truly ultrametric 
space. In § 2 we will solve this problem exactly, without making any assumptions 
concerning the structure of the underlying tree. We will obtain, in particular, a closed 
expression for the average autocorrelation function, whose asymptotic decay describes 
the rate of relaxation of the system. 

A central thesis of this paper is that the dynamic exponent v that characterises this 
asymptotic decay has the qualitative features of a measure of physical complexity 
introduced by Huberman and Hogg (1986), namely it is sensitive to the absence of 
self-similarity, rather than the randomness, or detailed information content of the 
underlying tree. To be precise, we derive a rigorous upper bound for v, and show, in 
§§ 3 and 4, that it is saturated by both uniformly and randomly multifurcating trees. 
Such trees are therefore optimal in that they lead to fastest relaxation. In 0 5 we also 
derive a lower bound for v, and identify a class of non-self-similar unbalanced trees 
that saturate it. All these results have recently been shown to hold also for the critical 
percolation threshold by Bachas and Wolff (1987), which can be related to the com- 
plexity of games. 

A corollary of our results is that in thermally activated processes the temperature 
dependence of the dynamic exponent is not universal, but varies with the underlying 
tree structure. In particular, the transition to instability is continuous for self-similar 
trees, and discontinuous for unbalanced ones. This is explained in 0 6 which also 
contains some concluding remarks. 

2. The general solution 

Ultradiffusion is described by the dynamical equation 

dPi 
-= E& 
d t  , = I  

where i = 1, . . . , N labels the states of the system, Pi( t )  is the 
the system at state i at time t, and the symmetric transition 

probability of finding 
matrix E satisfies the 
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ultrametric property 

81, min(&ik, 

for any three distinct states i, j and k. If E represents hopping rates between sites i 
and j ,  equation (2.2) implies that the two smallest hopping rates out of a triplet are 
equal. The diagonal transition elements are fixed by the requirement that probability 
be conserved, i.e. 

Eii = - c E i . ,  
j #  i 

(2.3) 

The ultrametric property (2.2) is equivalent to saying that the states of the system can 
be represented as the leaves of a generic tree, where the hopping rate between any 
two of them, say i and j ,  is only a function of the nearest common ancestor A of i 
and j on the tree, 

= = &A(,,)  

with E,  decreasing monotonically as one climbs along any path towards the root. By 
appropriately stretching the tree, we may always assume without loss of generality that 
E, = exp( - h A ) ,  where h, is the height of the branching point A from the bottom of 
the tree, as shown in figure 1. We shall refer to such a tree as a ‘metric tree’ to stress 
the fact that both its topology and the heights of its branches matter. There is one 
hierarchical transition matrix and one ultradiffusion problem for every metric tree. 

Figure 1. A generic tree illustrating our notation. The node A has three sons (SA = 3 )  and 
six final descendants ( N ,  = 6 ) .  A ,  is his father and A, the grandfather, that also happens 
to be the root of the tree. The height of a node as measured from the bottom leaves is 
minus the logarithm of the corresponding transition rate. The node B illustrates how the 
weight of a state can be effectively increased (by a factor eight in the figure) by letting it 
multifurcate at low altitude. 

An important remark is in order here: although the assumption of symmetric 
transition probabilities may seem overly restrictive, this is not the case since we can 
effectively increase the weight of any state by letting it multifurcate appropriately at 
low altitude as shown in figure 1. 

Before proceeding to an exact solution of equation (2.1), let us first introduce some 
useful notation and terminology. We shall denote by B, the unique nth ancestor of 
any branch point or tree leaf B(Bo= B by convention, B ,  is the father, B2 the 
grandfather, and so on, up to the patriarch or root). NB will stand for the total number 
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of final descendants or tree leaves generated by B (NB = 1 if B is itself a leaf), and 
SE for the number of sons, or immediate off spring. We also introduce the characteristic 
function 

if i is a descendant of B 
otherwise X ( B )  = 

where i = 1 , .  . . , N runs over the leaves of the tree. For convenience we will assume 
that branchings may only occur at integral multiples of some minimum adjustable 
height interval Ah, and will occasionally refer to all branches at height h = mAh as 
the mth generation. If n ( h )  is their total number, we define the silhouette slopes, 
which measure the rate of population growth at height h, by 

A l o g n ( h )  =-log( 1 n ( h )  ) 
A h  Ah n(h+Ah)  ' 

s ( h ) = -  

We shall refer to its average asymptotic value 

s = ,lim Jh '  s 
h / (  h ' -  h )  h >>h-roc 

(2.4a) 

(2.4b) 

simply as the tree's silhouette. Large and small values of silhouettes correspond to 
asymptotically fat and thin trees, respectively. 

We are now ready to obtain the complete set of eigenvectors and eigenvalues of 
any hierarchical transition matrix E .  To this end, consider first the action of E on the 
characteristic function of some branch point or tree leaf B :  
N N 

J = 1  ] = I  
E Y X J ( B ) = -  E v ( l - x , ( B ) )  

if X , (  B )  = 0 

where A(i, B )  is the nearest common ancestor of i and B, and by slight abuse of 
notation Z'ff=": stands for a summation over all of the ancestors of B, up to and including 
the root. 

We next define the vector 

for any two brothers B and E. Since B, = E, for all n > 0, and A( i, B )  = A( i, E) for 
any i that is neither a descendant of B nor of B, we easily deduce from equation (2.5) 
that V (  B, 6) is an eigenvector of E ,  with eigenvalue A that only depends on the common 
father of B and E, i.e. 

Consequently, there are f S B , ( S B I  - 1) degenerate eigenvectors of type (2.6), correspond- 
ing to all pairs of sons of B , .  A convenient basis for the subspace they span consists 
of the following vectors, one for each son of B , :  
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These satisfy the linear relationship 
N 6 V ( B ) = 0  

brothers6 

so that only (SEI - 1) of them are linearly independent. Since 

( S g - l ) = N - l  
branchpoints  6 

there is a single missing eigenvector of the N x N transition matrix E. This corresponds 
to the steady state of equal probability for all sites, which we denote by 

N 

v,(root) = 1/ N &,y(root) = 0. (2.9) 
j =  I 

Going back to equation (2.1), consider a particle that starts out at time zero at a given 
tree leaf L. Writing the initial condition as 

roof 

Pi( t = 0) = SLJ = VI(L,) 
n = O  

we immediately deduce that at later times 

From this we can exactly calculate any quantity of interest. We will concentrate on 
the autocorrelation function, i.e. the probability that the particle returns to its point 
of departure; this is 

(2.11) 

We will be mainly interested in this quantity averaged over all initial conditions L, 
which can be written 

1 1 
p ( t )  =-+ C exp(-t/T6) 

N branchpo in t s6  

where, for later ease of reference, we recall that 

(2.12) 

From equations (2.12) and (2.13) it easily follows that forJinite trees the decay of the 
autocorrelation function to its equilibrium value is always exponential and dominated 
by the largest characteristic time, 

Troot= (1,”) exp(hrool). 
For infinite trees, on the other hand, either one or both of the following scenarios may 
take place. (i) Some characteristic times may vanish, indicating that relaxation is 
unstable in part or all of the tree, which can thus be collapsed to a single state, and 
( i i )  some characteristic times may accumulate to infinity, leading to slower than 
exponential relaxation at long times. The leading asymptotic behaviour of the autocorre- 
lation function is in this case determined by the asymptotic behaviour of the spectral 
density 

(2.14) 
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as T + 00. In the following sections we will analyse this behaviour for trees on which 
relaxation is everywhere stable. 

3. Uniform trees 

We begin with the simplest example of an infinite, regular, uniformly multifurcating 
tree, for which each member of every generation produces b offspring. This is shown 
in figure 2. Some of the results of this section have already been derived previously 
(Schreckenberg 1985, Ogielski and Stein 1985, Paladin et a1 1985, Zheng 1986). If A h  
is the height interval between successive generations, the silhouette (equations (2.4a, b))  
is given by 

(3.1) 

Using the fact that NE, = b"N,, we can easily calculate, from equation (2.13), the 
inverse characteristic time corresponding to any branch point B of the mth generation, 
with the result 

s = ( l /Ah)  log b. 

7;' = [b exp(-Ah)]" 
( e A h  -8 

provided eAh > b, i.e. s < 1. For s 3 1 all characteristic times vanish and relaxation is 
unstable. Assuming s < 1, we finally obtain the autocorrelation function, equation 
(2.12), in the form 

b-1  s 

1 - s  logb 1-s  

(3.2b) 

( 3 . 2 ~ )  

with the corrections to the asymptotic behaviour (3.2a) falling off exponentially at 
large t (Erdglyi 1956). 

( 0 1  ( b 1  

Figure 2. Regular uniformly ( a )  bifurcating and ( b )  tetrafurcating trees; since the 
(asymptotic) rate of population growth with height is the same, these two trees have the 
same silhouette, and hence, as discussed in the text, yield the same dynamic critical 
exponent. 
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Note that, in contrast to the prefactor 0, the dynamical critical exponent vuniform 
is only a function of the silhouette and is therefore invariant under b + bo, Ah + a Ah. 
For instance, a tree that tetrafurcates at every unit height interval has the same 
power-law decay as one that bifurcates every half unit interval (see figure 2 ) .  One 
may also relax the condition that the branching ratio and height intervals be generation 
independent (but still insist that all members of a given generation be indistinguishable). 
By appropriately bounding P( t )  from above and below, it is straightforward to show 
that if the silhouette can be defined and lies between 0 and 1, the dynamic exponent 
is still given by expression (3 .26) .  The prefactor 0, however, can in this case acquire 
oscillatory and/or logarithmic time dependence. 

By allowing non-constant height intervals among successive generations, one can 
also study the limiting cases of vanishing or unit silhouette. Indeed, if the height h ,  
of the mth generation grows faster than linearly with m (so that s = 0) the autocorrela- 
tion function decays slower than any power of time, implying a l/f frequency spectrum 
(up to logarithmic corrections). We shall refer to such trees with vanishing silhouette 
as 'brooms'; we will later show that ultradiffusion may lezd to a l/f-like spectrum 
only when the underlying tree is a broom. At the other extreme, the slowest rate of 
growth of h, leading to finite characteristic times is given by 

h,  = m log b + a  log m a > l .  

It is clear that in this case s = 1, and the autcorrelation function is 

oi 

P( t )  = ( b  - 1) b-" exp{-t[m-" + ( 1  - l / b ) l ( a ,  m + l)]} = D( t )  exp(-c/t*) (3 .3)  
m = l  

where 5( a, m + 1) is the Riemann zeta function, c is a non-universal constant and D( t )  
decays slower than the leading stretched exponential. The asymptotic behaviour (3.3) 
is the well known Kohlrausch law. 

As opposed to the power-law decay, both the Kohlrausch and the logarithmic 
relaxation processes seem less generic since they occur at special values of the tree's 
silhouette. 

The expression (3 .2b)  for the dynamic critical exponent shows that fatter trees 
relax faster. In order to study the effect of the tree's structure on dynamics, it is 
therefore reasonable to only compare trees with a fixed silhouette (thus avoiding a 
heavyweight-featherweight bout). We will, in fact, restrict ourselves to trees with a 
fixed silhouette slope 0 < s( h )  = s < 1. 'the following result then shows that stable 
relaxation is fastest on uniform trees. 

Theorem 1. (Optimality of infinite uniform trees.) The dynamic critical exponent of 
any tree with fixed silhouette slope: O <  s ( h )  = s < 1 is bounded from above by vuniform = 
s / (  1 - s), provided there exist some x < 1 ,  such that no branch point B has descendants 
growing faster than exp[x(h, - h ) ]  with height. 

Remark. This assumption ensures stable relaxation everywhere on the tree. Indeed, 
if some branch point B has descendants growing like exp(h,-h) or faster, then 
relaxation among these descendants is unstable. The associated diffusion problem 
should therefore be reformulated on a new tree, obtained by collapsing the subtree 
generated by B to a single state. 
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Proof oftheorem 1 .  We first break the expression (2.12) into a sum over generations: 

We then use the fact that the average of exponentials is larger than the exponential 
of the average to obtain 

" 1  P(r)a N A ,  exp(-t/T,) 
m = l  

(3 .4a )  

where A,,, is the net population increase at the mth generation: 

Am = ( S B - 1 ) = N e x p ( - s m A h ) ( e Y A h - 1 )  (3 .4b )  
6: h B =  m A h  

while 7,' is the average inverse characteristic time of the mth generation: 

(3.4c) 

Now, for any B belonging to a generation older than m, let dm(  B )  stand for the number 
of descendants of B at the mth generation. The assumption of stable relaxation ensures 
that dm(  B )  exp[x(hB - m A h ) ] .  Using this and equation (2.13) in ( 3 . 4 ~ )  one can 
obtain an  upper bound for 7,' as follows: 

c ( SB - 1 ) ~ ; '  = 1 N B  1 - e-"h)( dm-l(  B )  - dm( B ) )  
B : h B = m A h  B :  h B z  m A h  

X 

C N ( l - e A h )  exp[-(m+n)Ah]exp[x(n+l)Ah] 
n =o 

+ T ~ ' S  c exp[m(s - l ) A h ]  ( 3 . 5 )  

with 
(1 - e - h h )  e x b h  

C =  < oc. 
[exp(sAh)-l]{l  -exp[(x-  l)Ah]} 

Putting inequality (3.5) back into ( 3 . 4 ~ )  we finally obtain 

P ( t ) 3 ( e i A h - l )  exp(-smAh) exp{-tc exp[m(s- l )Ah]}= 

with d a constant, which completes the proof of our theorem 

X 

m = l  

A possible application of this result is in hierarchical organisations or computer 
networks in which information signals are transmitted through diffusion. What we 
have shown is that uniform structures are in this case optimal. Note however that our 
result concerns only the asymptotic behaviour of the average autocorrelation function, 
and hence does not in general apply if one is interested in either a particular initial 
condition or in small finite trees. For the latter we can, nevertheless, prove a similar 
but weaker optimality result, as follows. 

Let T ( M ,  B )  be the class of all finite trees with M generations, and an average 
overall branching ratio b per generation. For a given tree T E  T ( M ,  b )  order its 
characteristic times T~ in decending order. We say that TI relaxes faster than T2 if for 
their first non-matching characteristic times T ~ : ! !  < 7 ~ 1 2 ' .  Then the following lemma 
holds. 
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Lemma 1 .  (Optimality of finite uniform trees.) Among all trees in T (  M, b )  for which 
each member of every generation has at least two sons, the uniform tree relaxes fastest. 

Prooj The smallest inverse characteristic time 7;LOt = b M  e-MAh is the same for all trees 
in T ( M ,  b) .  Consider next the inverse characteristic times corresponding to the b 
members B"), . . . , 

T ~ ( , ! =  NB(~~exp[ - (M- l )Ah]+(bM - N E ( $ ) )  exp[-MAh]. 

These have in general different but non-vanishing multiplicities, since by assumption 
SE( 1 )  > 1. Their sum 

of the ( M  - 1)th generation: 
- 1  

b 

T,!o= b M  exp[-(M-l)Ah]+bM(b-1)  exp(-MAh) 

is a constant in T ( M ,  b ) .  Hence, to maximise their minimum, they must all be equal, 
i.e. NB(l! = . . . = NB(hl = b M - l ;  the proof of the optimality of uniform trees can now be 
easily completed by induction. 

i = l  

4. Structural noise 

We now turn our attention to uniformly random trees, constructed by allowing the 
multifurcation number of every branch at every generation to be an independent 
random variable with probability distribution P(X).  These can be considered as 
uniform trees, with branching ratio 

(X)= f P(X)X 
x = 1 

per generation? and with some structural noise. Our main result is that such noise is 
irrelevant in that it leads to at most logarithmic modifications of the autocorrelation 
decay, and thus leaves the dynamic exponent unchanged, i.e. 

S 1 
-- s=--log(X)<l 

Ah Vrandom - 1 - s  (4.1) 

The reader not interested in the technical details of the demonstration can skip the 
remainder of this section. 

To start with we briefly review some basic facts from the theory of branching 
processes (Harris 1963). Let X, be the number of descendants of a given node after 
n generations, and let P , ( x )  be its probability distribution. This clearly satisfies the 
iteration equation 

In terms of the generating functionals 
X 

G,(s)= P, (X)S"  
% = I  

t I f  (x) is not an integer, it can be made into one by raising it to a power and appropriately rescaling the 
inter-generation gap, as discussed in the previous section. 
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and since convolution amounts to multiplication, equation (4.2) becomes 

Gn ( s )  = g (  G n - , ( s  1) = g'"'(s) (4.3) 

Since g(1) = 1 for normalisation, we easily find that the average value of X ,  is 
where g'") is the nth iterate of the generating functional g ( s )  of P ( X ) .  

given by 

d Gn d g  
( X , )  =- ( 1 )  = (- = ( X ) " .  

d s  d s  

Define the random variable Wn = X n / ( X ) " .  The basic result we will need is that, 
provided the second moment of P ( X )  exists, W, converges as n +CO with probability 
one and in mean square to a random variable W with finite variance, and with an  
absolutely continuous distribution p which satifises the stationarity condition that 
follows from equation (4.2): 

x p (  W ( X ) - z , .  . . - z k - , ) .  (4.4) 

In words, this means that in a random branching process, the population has the 
expected exponential growth up  to a random prefactor. 

To illustrate these facts, consider the simple example of an  exponentially decaying 
distribution given by 

P ( X )  = ( 1  - l / C ) C X  for X E Z+ 

where c < 1 and ( X )  = 1 / (  1 - c). Its generating functional 

( 1 - c ) s  S g(s)=-- - 
1 - cs ( X ) -  s ( ( X )  - 1 )  

belongs to the class of fractional linear generating functionals, which are closed under 
iteration. One therefore finds 

S ( l - ( x ) - n ) y  
+ P"( Y )  = 

G n ( s )  = ( X ) "  - S((X)" - 1 )  ( X ) "  - 1 (4.5) 

from which we deduce that W, converges exponentially fast in n to a random variable 
with distribution p (  W )  = eCW. 

Going back to the problem of diffusion, we would like to average the autocorrelation 
function over all trees with the appropriate probability distribution. Since averaging 
over all trees automatically takes care of averaging over initial conditions, it will suffice 
to consider expression (2.11) for the autocorrelation function, which we rewrite for 
convenience as 

pL(t)  1 s n  = C (Ni , f_ ,  -Ni , f )  
n = l  n = l  

xexp[ - t (~L , , exp( -h , " )+  m > n  c ( N L , , , - N L  ,,,_, )exp(-hL,,,) )] . (4.6) 

According to our previous conventions, the above summation runs over all branch-point 
ancestors of the initial leaf L. We may, however, also take the summation to run over 
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all generations, in which case L, denotes the member of the nth generation on the 
unique path from L to the root, and hL,, = nAh. If L, is not a branch point (i.e. if it 
has a unique son) then 

ANL,, NL,, - NL,,-~ = 0 

and L, makes a vanishing contribution to the autocorrelation function, as it should. 
The asymptotic behaviour of the average autocorrelation function p( t )  is deter- 

mined by the large-n behaviour of the average summand s,; in order to perform this 
average, the trick is to note that S, only depends on the independent random variables: 

w, = NL,,/(Wn 

and on all 

r?l, ANL,"+~ /(X)" for m 2 n 

whose probability distributions converge at large n to p (  w) and P( 1)6( 9 )  + p (  W), 
respectively, where 

p'( 6) = P ( 2 ) p (  6) + P ( 3 ) p * p (  6) + . . . 
with * denoting convolution of probabilities. This latter distribution follows from the 
fact that with probability P (  1) no new line of descendants other than the one leading 
to L emanates from L,, in which case e,, = 0, while with probability P ( k  + l),  k new 
lines do emanate and subsequently grow as (practically infinite) independent random 
trees. We can thus write for large n :  

dw 
- p(w) exp(-tw(X)"-' e-nAh) 

(x)-"+' w 
s, - (X)-,+l 1 

x n ( P( l )+[omd6b(G)  exp(-tfi(X)" exp[-(m+l)Ah]} 
m 3 n - 1  

OC dw 
(x) - "  w 

-(X)-" -p(w) exp[-tw(X)" exp(-n/Ah)] 

x n (P(l)+jomd6p'(fi)exp{-t@(X)'" exp[-(m+l)Ah]} . (4.7) 

In the above expression, we kept the vanishingly small cutoff of the w integrations 
that comes from the requirement that NL, = w,/(X)" 2 1; this is not necessary for the 
w integrations which, as will become clear in a moment, are convergent as w + O .  If  
this were also true for the w integrations, the summand would obey the homogeneity 
relation 

m a n  1 

= ( t )  =(X)-'S;;(t(X) e P h )  

from which we could easily deduce by a change of variables ( z  = t(X)" e-nAh) that 

(4.8) 

with 
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We will now show that a more careful treatment of the w integration cutoff leads to 
at  most logarithmic modifications of the above power-law decay. 

To this end we first prove the following lemma. 

Lemma 2. p (  w)  is either bounded, or else diverges at most logarithmically, as w + 0. 

Proof: Assume p (  w)  - C W - ~  as w + 0, with 1 > CY > 0 (since p must be normalisable). 
Putting this into the stationarity condition (4.4) one then obtains 

CW-" = ( X ) P ( l ) C (  w ( X ) ) - " ( l + o (  w'-a) )  

P (  1) = ( X y - ' .  

( X )  = P (  1) + 2 P ( 2 ) + 3 P ( 3 ) + .  . .c P (  1) + 2 (  1 - P (  1)) 

and hence 

But 

so that ( X ) + ( X ) a - '  s 2 .  This cannot be satisfied by any ( X ) >  1 which in turn implies 
that we have derived a contradiction. Thus p (  w )  cannot diverge faster than logarithmi- 
cally as w + O .  

Note that one can likewise show that &$) diverges at most logarithmically as 
G + 0, which justifies our throwing away the $-integration cutoffs. 

Converting the sum over generations to an  integral, and changing variables to z =  
t ( X ) "  we can write the average autocorrelation function at large t in the form 

with f(z, w) a bounded function that decays exponentially at large z. Since p(  w) is 
integrable as w + E ,  and has at most a logarithmic singularity as w + 0, we easily 
conclude that the term in brackets has at most a logarithmic time dependence at  
large t .  

This completes our demonstration that uniformly random trees have the same 
dynamic exponent as completely ordered uniform trees. One could also verify this 
assertion directly by calculating the exact average autocorrelation function in the 
special case of the exponential distributions given by (4.5). Similar results have been 
obtained by Kumar and  Shenoy (1986). 

5. Complex hierarchical structures 

Both the uniform and the totally random trees are self-similar hierarchical systems, 
whose parts (or subtrees) are at least on the average identical to the whole. Huberman 
and Hogg (1986) have argued that they are therefore equally simple structures, which 
should minimise any physically relevant measure of a tree's complexity. Complexity 
is in this sense tantamount to lack of self-similarity or to diversity at all levels of the 
hierarchy. This is to be contrasted with the information-theoretic measure given by 
Shannon's entropy defined by the size of the smallest algorithm describing how to 
construct an  exact replica of a given tree, and hence maximised by random trees. 
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Our results place the above ideas in a precise physical context. Indeed, we have 
demonstrated that for a given tree silhouette, self-similarity leads to a maximum value 
for the dynamic critical exponent v, and hence guarantees the fastest relaxation. In 
this section we will obtain a saturated lower bound for v, and will in particular show 
that non-self-similar structures do indeed lead to a slower power-law decay. Thus 
complexity or structural diversity is reflected in the rate of relaxation, and - - v  is a 
physically sensible measure of it. Similar results have also been obtained in the context 
of percolation by Bachas and Wolff (1987), with the word ‘complexity’ given in that 
context a precise operational meaning. 

Consider a particular unbalanced tree, constructed by allowing the left-half mem- 
bers of every generation to trifurcate, while the right-half members give rise to a single 
son each, as shown in figure 3 ( a ) .  This is clearly a non-self-similar tree and cannot 

M ( 1 -  

0 M log 2 Y 

=) log 3 

M 

Figure 3. ( a )  An example of a maximally unbalanced tree that saturates the lower bound 
for the dynamic critical exponent. The left-half members of every generation trifurcate, 
while the right half give rise to a single son each. ( b )  The orthogonal triangle containing 
the nodes of this tree, when parametrised as explained in the text. The root lies at the 
origin. Region 1 is a regularly trifurcating subtree, while region 2 contains those nodes 
whose descendants trifurcate for a while, but eventually enter the right half of their 
generation and continue as dead branches thereafter. The broken line is the line of ancestors 
of a typical node A, along which we integrate to calculate 7,; its slope is initially 
Ay/Ax = log 3, until it hits the left-most branch of the tree, from which point on it continues 
straight up to the root. 
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be analysed by renormalisation group techniques. Since the total population doubles 
at  every step, its silhouette is given by 

s = ( l / A h )  log 2.  

As we will now show, its dynamic critical exponent is v = s, meaning that relaxation 
is slower than for the corresponding self-similar structure for which we previously found 

vuniform = s / (  1 - s) .  

Intuitively, this is because different parts of an unbalanced tree relax at different rates, 
and it is the slowest processes that dominate at  long times. 

To calculate the average autocorrelation function P ( t )  for our tree of figure 3 ( a ) ,  
assume first that the total number of generations is M ( M  will be taken to infinity in 
the end). We will label the j t h  from the left node of the ith from the bottom generation 
by the coordinates ( x  = M - i, y =log  j ) ;  the tree is then represented by an  orthogonal 
triangle, as shown in figure 3 ( b ) ,  with a hypotenuse slope equal to the silhouette times 
the inter-generation height interval, log 2 = sAh. Consider now the descendants of a 
given node ( x ,  y )  with y # 0; these will trifurcate either until they reach the bottom of 
the tree, or until they enter the right half of their generation, from which point on they 
will continue as single dead branches until the end; these two cases correspond to 
regions 1 and 2 respectively in figure 3 ( b ) .  The number of fertile (i.e. trifurcating) 
generations following ( x ,  y )  is 

( M - x  in region 1 

* l  in region 2 ( 5 . 1 )  

where the * 1  ambiguity is due to the fact that (at most) one generation of descendants 
of ( x , y )  may be partly fertile and  partly infertile. We will in the following neglect 
this ambiguity, since it does not affect the result for the dynamic exponent. Clearly, 
the number of final descendants or tree leaves generated by 

N ( x , y ) =  3 T ( x J ) .  

For y = 0 and  in region 2,  the number of final descendants 
we may still express its rate of change with x as 

node ( x , y )  is 

( 5 . 2 a )  

is actually modified, but 

A N  
Ax 
- ( x ,  0 )  = 2 x 3T"x.0 ' .  ( 5 . 2 b )  

We are finally in a position to calculate the inverse characteristic time corresponding 
to the node (x, y ) ,  as given by equation (2 .13) .  Converting the sum over ancestors to 
a line integral, as shown in figure 3 ( b ) ,  and using equations ( 5 . 1 )  and ( 5 . 2 ) ,  we find 

7-1(x,  y )  = ( 3  e-Ah)M-x+ dz(3 e-Ah)M-z  
M - M logZ/log3 

r M - M logZ/log3 

+ Jo 
( 5 . 3 )  
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and 

T - l ( x ,  y )  = 3(xlog2-.v)/l0g(3/2) exp[ -Ah( M - x)]  

dz  exp[ - A h (  M - Z)]3[~log2-Y+(x-~)10g31/log(3/2) 
+ !x:.”,lo,3 

+ !0x-y’10g3 
dz exp[-Ah(M - ~ ) ] 3 ~ ~ ~ g ~ / ~ ~ g ( ~ / ~ )  in region 2 (5.4) 

where once again we have dropped various finite multiplicative constants, which cannot 
modify the leading power law in the asymptotic behaviour of the spectral density, 
equation (2.14). Note also that the first term on the left-hand side of equation (5.4) 
should be changed to 

2 M  exp[-Ah(M-x)] 

if y = 0. 

that for almost all nodes (but a set of measure zero) both x and y >> 1. If 
These expressions simplify considerably if one takes the limit M + CO and notes 

s 2 log 2/log 3 

one then finds easily that all inverse characteristic times diverge, implying that relaxation 
is unstable everywhere on the tree. Let us therefore consider s 6 log 2/log 3. Up to 
finite multiplicative constants and exponentially suppressed additive terms we then find 

T-l(x, y)  = { (3 
in region 1 
in region 2. ( x  log 2 - y)/3’0g‘3’2’ exp[ -Ah ( M  - x)]  

It is now straightforward to analyse the asymptotic behaviour of the average autocorre- 
lation function, equation (2.12), which can be written as 

c c  

dx dy e” exp[ - t /  ~ ( x , y ) ]  
regions I and2  

p ( t ) =  J J 
= D1 ? - ” I  + D2f-”2 ( 5 . 5 )  

where the two terms in the last expression correspond to the integration over regions 
1 and 2 respectively. One finds 

S 
V I  = U2 = s. 

(log 2/log 3) - s 
( 5 . 6 )  

The second of these two exponents, being smaller, dominates at long times and thus 
describes the asymptotic decay of the average autocorrelation function. We have 
emphasised the word ‘average’, because for any given initial condition decay can be 
much faster; if for example our particle starts out on a tree leaf in the left half of its 
generation, it can be shown that the autocorrelation function dies out with exponent 
v, , which incidentally is the exponent obtained for a tree that trifurcates uniformly 
every height interval Ah. Figure 3(b) may actually mislead the reader to think that 
such ‘fast decaying’ initial conditions should dominate the average, but this is not the 
caset: the prefactor D2 does not vanish. 

t Note that in figure 3 ( b ) ,  y is a logarithmic scale, so that practically the entire population of tree leaves is 
concentrated in the lower right corner of the triangle. 
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The dynamic exponent for the unbalanced tree of this section obviously satisfies 
v = s < V,,iform = s/( 1 - s). 

Thus rearranging the branches of a uniform tree (without changing its silhouette, i.e. 
adding new branches) can indeed slow down relaxation. Is there a limit to this 
slowing-down effect or can we go all the way to a logarithmic time decay (l/f noise) 
by appropriately complexifying the tree's structure? The following result answers this 
question. 

Theorem 2. The dynamic critical exponent of any tree is bounded from below by its 
silhouette: v 2 s. 

ProoJ: From equation (2.13) it follows easily, since N B  2 1, NE,, 2 NB,,_,  , that 
2 e-', 

for all tree nodes B. Thus we can bound the average autocorrelation function as follows: 
- 1 
p ( t )  s C ( s ,  - 1) exp(-t 

t r e e n o d e s 6  

X 

= C (eiAh -1) exp(-nsAh) exp(-t e-nAh) 

r= t - s .  

n = l  

This simple theorem thus demonstrates that the unbalanced tree of this section saturates 
the lower bound for the dynamic exponent, and leads to the slowest allowed relaxation. 
We should point out that this slowest-relaxing tree is not unique. For instance, any 
tree for which the bth fraction of each generation b-furcates (with 6 some integer), 
whiie the remaining members continue as dead branches to the end, would give the 
same dynamic exponent. The prefactor 0, as well as the critical silhouette above which 
relaxation is unstable, do  however depend on 6. 

6. Discussion 

Figure 4 summarises our results. The dynamic exponent v is maximised by both 
uniform and random trees, and minimised by the unbalanced trees of 0 5 .  The same 
qualitative behaviour is obtained if instead of v one plots a measure of the tree's 
complexity defined by counting the number of non-isomorphic pieces at every gener- 
ation of the tree, as shown by Huberman and Hogg (1986). More recently, it has been 
shown that the critical threshold for percolation on a tree, which can be interpreted 
as the complexity of winning strategies in a game, is also minimised by uniform and 
random trees and maximised by the trees of 0 5 (Bachas and Wolff 1987). We may 
therefore say that the rate of relaxation is sensitive to the physical complexity or lack 
of self-similarity, rather than to the structural noise or Shannon entropy of the underly- 
ing tree. It would be interesting to see whether quantitative relations among these 
various complexity measures can be obtained. 

Besides slowing down relaxation, the complexity or absence of self-similarity has 
another more spectacular effect, when one considers thermally activated processes. 
Assuming in this case that the hopping rates are given as 

(6.1) = exp( -A v,/ T )  
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V 

Shannon 
entmpy 

Figure 4. A schematic plot of the dynamic exponent Y against the Shannon entropy, or 
detailed information content of the underlying tree. Here s is the silhouette of the tree, 
which is held constant, and the broken lines are rigorous bounds. 

with AVG an energy barrier, we easily conclude from the definition (2.4) that the 
silhouette is proportional to the temperature. Therefore the temperature dependence 
of the dynamic exponent is given by 

for self-similar (uniform or random) trees and 

( 6 . 2 ~ )  

(6 .2b )  

for the most complex trees of 0 5 .  This is illustrated in figure 5 .  Note in particular 
that the transition to instability is continuous in the former case and discontinuous in 
the latter. 

z, T T, ' T 

Figure 5. The temperature dependence of the dynamic exponent, assuming hopping rates 
are given by equation (6.1), for ( a )  self-similar and ( b )  maximally complex trees. Note 
that the transition is continuous in the former case and discontinuous in the latter. 
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Before proceeding we should point out that ultradiffusion is not just a naive model 
of the relaxational dynamics of systems with many timescales. I t  can be actually 
considered as a universal description of such dynamics, in two different ways. 

(i)  In real space one may describe the spreading of an excitation by lumping 
together in larger and larger blocks the degrees of freedom that relax at characteristic 
times 7, < r2 < . . . , as has been suggested by Palmer et al (1984). Note that for systems 
with disorder the ensuing hierarchical tree is in general non-uniform. 

( i i )  In configuration space one may describe relaxation as a stochastic motion of 
an ensemble of particles in a valley landscape of metastable states (Dotsenko 1985). 
At sufficiently low temperature, the hopping rate between two such states is 

exp( -minmax( U)/ T )  

where minmax( i, j )  is the minimum over all paths from i to j of the maximum energy 
barrier encountered along the path. This satisfies the ultrametric property 

minmax( i , j )  G max{minmax( i, k ) ;  minmax(j, k ) }  

since one can always go from i to j via k, and hence defines a hierarchical structure 
in the space of metastable states. We owe this argument to Mizard (1986). 

It is this second description of relaxation as ultradiffusion in the space of metastable 
states that is relevant for studying the temperature dependence of the dynamic exponent. 
The simple assumption (6.1), however, is apriori justified only in the limit of vanishing 
temperature. As T is raised, it is in general invalidated for several reasons. To begin 
with, entropy comes into play and hopping rates are not simply determined by a 
maximum energy barrier, so that ultrametricity of the transition matrix may be 
destroyed. One may simply hope that the ultrametricity of equilibrium states, demon- 
strated in the mean-field spin glass (Sherrington and Kirkpatrick 1975, Mizard et a1 
1984a, b) and conjectured in a variety of other systems (Palmer 1986), implies also an 
exact or approximate hierarchy of hopping rates among long-lived metastable states. 

Even if this is so, free-energy barriers would in general be T dependent, so that 
the silhouette is not simply proportional to T. Equations ( 6 . 2 ~ 1 )  and ( 6 . 2 b )  should 
therefore be replaced by 

and 

( 6 . 3 a )  

( 6 . 3 6 )  

where s( T,) = 1 in the first case, and s(  Th) = log 2/log 3 for the trees of § 5. The precise 
form of v( T )  now depends on the unknown function S (  T ) .  If, however, the silhouette 
changes continuously with temperature, the nature of the transition is robust: it is 
continuous for self-similar trees and discontinuous for complex trees. Note incidentally 
that the transition described in equation (6.2) is unphysical, since relaxation became 
unstable above the critical temperature. This is, however, only due to the long-range 
nature of hoppings and can be easily rectified: by introducing an exponential T- 
independent cutoff that respects the ultrametric structure of the space, we can ensure 
that the silhouette is bounded from above at all temperatures, and the transition is to 
a region of exponential relaxation. 
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It is tempting to compare these predictions of ultradiffusion with what is known 
for the mean-field spin glass: as shown by Sompolinsky and Zippelius (1981,1982) 
relaxation in the latter is exponential above the glassy transition and changes over to 
a power law with exponent 

1 Tc-T  
v( T )  =--- + O( T, - T ) 2  

2 TT,  

below. Does this imply that the hierarchical tree in the Sherrington-Kirkpatrick model 
(Sherrington and Kirkpatrick 1975, MCzard et a1 1984) is complex? 

More work is necessary to answer such questions and to unravel the rich properties 
of systems that defy the simplicity of scaling laws. 
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